
I’m Nathan Reed, a rendering programmer at Sucker Punch Productions in 
Bellevue, WA, and I’m going to speak today about a couple of new ambient 
occlusion techniques we used in our recent game, Infamous 2. 
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First of all, some background on our game: Infamous 2 is a PS3 exclusive, 
open-world game set in an urban environment.  We have a deferred-shading 
renderer, and like many game engines, it supports two main ambient 
occlusion (AO) technologies: static, per-vertex baked ambient occlusion, and 
screen-space ambient occlusion (SSAO). 
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Static, baked AO is great when it works, but it has some drawbacks.  In order 
to get smaller-scale details in your AO, you may need to tessellate your 
meshes more than you’d like if you’re baking AO per-vertex; or if you’re store 
it in textures, they need a lot of memory to get enough resolution for fine 
detail, especially for a big, open-world environment.  And of course, with any 
baked approach you can’t move or change anything in real-time. 

 

Therefore, baked AO is best-suited for very large-scale occlusion where both 
source and target are likely to be static, such as from a building onto the 
streets, alleys, and other buildings around it.  It’s not well-suited for smaller-
scale occlusion or for things that may move around. 
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On the other hand, SSAO is completely dynamic, so it can adapt to anything 
moving or changing.  But it typically has a limited radius in screen space for 
performance reasons, so if you get up close to an object the shadows will 
seem to contract, since they can’t get larger than a certain number of pixels.  
And you have no information about anything that’s offscreen, or behind 
something else.  Because of both of these effects, SSAO can give different-
looking shadows at different camera positions. 

 

As a result, SSAO is a good fit for very fine details of ambient occlusion, but 
not for larger scales. 
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There’s a gap between baked AO and SSAO, where neither approach is very 
well-suited for occlusion on the medium scale, bigger than the SSAO radius 
but smaller than mesh tessellation.  So in our engine we’ve added a hybrid 
approach that can supplement baked AO and SSAO by handling occlusion on 
the medium scale. 

 

The basic idea is to precompute a representation of the AO that an object 
casts onto the space around it, and store that data in a texture. This is done in 
world space, so it has a consistent appearance from all camera positions. 
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And the precompute is based only on the source geometry, not on the target, 
so it can be moved around in real-time.  It’s not completely dynamic; it does 
require the source geometry to be rigid.  It gets applied very much like a light 
in deferred shading: we draw a box around the object and use a pixel shader 
to evaluate AO at each shaded point within the box. 

 

There are two variants of this, which we call AO Fields and AO Decals, and I’ll 
talk about each in turn. 
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Let’s start with AO Fields.  Here’s a video to demonstrate the technique.  (The 
video is at http://reedbeta.com/gdc) 

 

SSAO is disabled in this video, so the contact shadows you’re seeing around 
these objects is all due to the AO fields. We use it on many smaller objects like 
the mailbox and potted plants, but also on a few larger ones, such as the cars. 
As you can see, it gives quite plausible results for objects in motion. 
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AO fields are similar to a few previously reported techniques, and here’s my 
list of references. 
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So how does this work?  First of all, we put a box around the car, and put a 
volume texture in the box.  Each voxel in that texture stores an occlusion cone 
representing how the car looks from that point. The RGB components are a 
unit vector in the average direction of occlusion, and the alpha component 
stores the width of that cone, as a fraction of the hemisphere occluded. 
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Here’s a diagram of the occlusion samples surrounding the car.  Each cone 
represents one voxel of the texture, and as you can see, the cones points 
toward the car, getting wider the closer they are. 
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All of this gets built offline by our tools in a pretty straightforward way.  For 
each voxel, we put the camera at the voxel center and render the car into a 
small cubemap. Then we pull that cubemap back and work out the centroid of 
the drawn pixels, in 3D, with solid angle weighting.  Then we count how many 
pixels were drawn, again with solid angle weighting, to get the occluded 
fraction of the hemisphere. 
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Here’s this process schematically.  There’s an example of the cubemap as seen 
from one particular voxel.  We pull back that cubemap, use the centroid of the 
drawn pixels to get the cone axis, and count the number of drawn pixels to get 
its width, as a fraction of the hemisphere. 
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That was the precomputed part of it.  Now in real-time we need to apply this.  
It’s exactly like a light in deferred shading: we draw the bounding box of the 
field and in the pixel shader, we sample the G-buffer to get the world-space 
position and normal vector of the shaded point.  All the usual deferred-
shading optimizations can be used, such as stencil masking or depth bounds 
tests. 

 

Once we have the world position, we transform that into the local space of 
the field, sample the volume texture to get the occlusion vector and cone 
width, and transform the occlusion vector back into world space. 
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Finally, we estimate the AO for the pixel according to this equation, which 
uses the normal of the target surface and the occlusion vector and width 
retrieved from the texture.  Strength here is an artist parameter that controls 
how dark the AO gets.  It can also be used to fade out the AO fields as they 
get far away, for LOD. 

 

The saturate factor on the end of this equation deserves a little explanation. 
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Here’s a diagram of what that term does.  It’s approximating the fraction of 
overlap between the occlusion cone and the normal hemisphere.  The cone 
might not entirely be within the hemisphere, in which case we shouldn’t apply 
the entire occlusion value. Previous approaches used a more complicated 
function or a lookup table here, but we just approximate it by this clamped 
linear ramp based on the dot product of the normal and occlusion vector, with 
slope based on the cone width.  It’s a very coarse approximation, but in my 
experience it works well. 

15 



Once we have the AO value, we just multiplicatively blend it into the G-
buffer’s AO channel.  We don’t do anything special to work around double-
blending issues – in our use cases, we don’t typically have AO fields 
overlapping so much that this would be an issue. 

16 



Now for some of the bothersome technical details.  The first issue is how large 
should we make the bounding box?  We used a procedure suggested by one 
of the references, the Malmer paper.  Here, the gray box is our car, or 
whatever source object, and the blue box is the AO field.  To get the AO field 
size, we start with the source object’s bounding box and expand it by pushing 
each face out a distance based on that face’s area.  The epsilon is a desired 
error – that is, the error due to cutting the AO field off at a finite distance 
(since it would ideally go on forever). 
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We used an epsilon of 0.25, which is fairly generous but keeps the boxes from 
getting too large and costly to draw. 
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The texture size is chosen by the artist for each object.  The car was the 
largest one in our game, at 32x16x8.  Most other objects were only 8-16 
voxels along each axis. 

 

We stored the textures in standard 8-bit RGBA format, with no DXT 
compression, and no mipmaps.  The trouble with compression is that because 
the voxels are pretty large, any DXT artifacts are just enormous and look 
terrible.  At the end of the day. the total texture size is about 2-16K per unique 
object. 
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Unfortunately, there are a few artifacts that show up with all this, and I’m 
going to talk about how we solved them.  The first you’ll notice with AO fields 
is that since the field cuts off at a finite distance, the occlusion doesn’t go all 
the way to zero at its edge, so you can see this very obvious box-shaped 
shadow around the car. 
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We solve this in the simplest way possible, by just forcing all the alpha values 
(which are the occlusion cone widths) to be zero at the boundary.  We iterate 
over the edge voxels and find the maximum alpha, then linearly remap all the 
alphas to send that maximum to zero.  Here’s the equation to do that. 
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So here’s before that fix… 
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…and here’s after.  No more box. 
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Another artifact we saw was getting occasional splotches of incorrect self-
occlusion on the surface of the object.  The root cause of this is that the 
occlusion changes rapidly when you’re close to a surface, and the low voxel 
density doesn’t capture this well. 

 

Here’s the AO on the car.  Each of the circled areas contains a dark blotch of 
incorrect self-occlusion. 
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Ideally, the way I’d like to fix this is to detect voxels that are inside geometry 
and do some sort of fixup on them.  However, identifying interior voxels isn’t a 
trivial thing to do in 3D.  We can’t depend on our geometry to be 2-manifold 
or anything nice like that, so it’s not that easy to define what’s inside and 
what’s outside. 

 

So, I opted for a hack that fixes the worst of the problems in a simple way.  We 
just bias the sample point away from the receiving surface, in real-time.  
When we sample the volume texture, we push the sample point along the 
normal of the receiver by a fixed distance of half the size of a voxel.  This helps 
get the sample points away from problem areas. 
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Here’s the AO channel before the fix… 
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…and after.  You can see that the areas of bad self-occlusion have vanished.  
The AO under the car also got a little bit more contrasty, because the sample 
points on the ground are being pushed up toward the car.  In general, this 
normal biasing fixes problems, but it does occasionally create new problems.  
Still, on balance we think it’s a win. 
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That’s it for AO Fields.  Now I’m going to switch gears and talk about AO 
Decals, a variant of this technique.  Let’s begin with a video of it.  (The video is 
at http://reedbeta.com/gdc) 

 

Again, SSAO is disabled here, and there’s an AO decal on each of these 
windows.  I’m switching it on and off there, so you can see they’re producing 
those contact shadows around the window frames.  And again, with this 
electric meter, the AO decal is rendering those shadows around the side of 
the meter. 
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As you saw, AO Decals are used for thin objects projecting from or embedded 
in a wall or floor.  They’re a thin, planar version of an AO Field. 
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Here, instead of a volume texture, we use a 2D texture.  This texture is 
oriented parallel to the wall or floor, and we store occlusion values for four 
depth slices in the RGBA channels.  Unlike with AO Fields, we’re not storing 
any directional information, just an occlusion fraction for the hemisphere 
away from the wall. 
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Here’s a diagram of the depth slices.  Here’s a window, and I’ve added planes 
representing the four depth slices: red, green, blue, and alpha. 
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Eventually we’re going to end up with an occlusion sample at each texel on 
each of those four planes.  But first, I’m going to begin by rendering a 
heightmap of the source geometry, at the same resolution as the decal 
texture will eventually be.  This is just a parallel projection looking at the 
object from the front; we draw it in grayscale, with black at the back of the 
depth range and white at the front.  Then we use the heightmap to place our 
initial set of samples.  We take an AO sample at each texel just above the 
height rendered in the heightmap.  We’re doing this to try to make sure that 
we capture the AO at the surface well, since we know we’re going to evaluate 
it there. 
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Here’s an example of the heightmap for that window, and here’s a diagram – 
this is a top view now – showing the sample points generated from the height 
field.  As you can see, they’re not all lined up with one of the depth slices. 
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So the next step is to assign each of these samples to the nearest depth slice.  
Note that there isn’t a depth slice at the very front of the depth range, since 
occlusion will always be zero there, so the four depth slices are positioned 
toward the back of the depth range.  Anyway, after we assign the heightmap 
samples to the nearest depth slice, we take additional occlusion samples up 
to the top of the depth range. 
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Here’s a diagram showing the heightmap samples in blue, now snapped to the 
nearest depth layer, and the samples in green are the additional samples we 
take above each heightmap sample up to the top of the depth range.  We’re 
also going fill in the samples below the heightmap, but I’ll talk about that in a 
few more slides. 
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Now when we apply the AO Decals in real-time, it’s almost the same as for AO 
Fields; again, we draw a box and run a pixel shader to evaluate the occlusion 
at each shaded point.  However, we now have no directional information, so 
the AO value becomes just 1 – strength * occlusion. 
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Since we’re packing depth slices into RGBA, we no longer get hardware 
filtering along the depth axis, as we did with the volume textures.  So here’s a 
snippet of shader code for doing that filtering.  The idea is to calculate deltas 
from one depth slice to the next, then use the dot product to sum up the right 
amount of each delta. 
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The bounding boxes for AO Decals are sized the same way as for AO Fields, 
but in this case we used an even higher epsilon, of 0.7.  It was particularly 
important for us to keep these boxes small because we often have an AO 
Decal on every window of a large building, and it’s important to keep them 
small to keep performance under control. 

 

The texture size for these is usually 64-128, and we use DXT5 compression.  
That introduces some noise, but it’s at a small scale so it’s much less 
objectionable than it would be for AO Fields, and is often hidden by noise in 
the color textures, normal maps, etc.  At the end of the day, the textures are 
usually 4-16 K, so about the same size as for AO Fields. 
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An artifact that shows up with AO decals is that we get halos around height 
changes in the source geometry.  Here’s a screenshot of one such artifact; you 
can see a white line where the window frame meets the wall, and various 
similar white lines elsewhere in the image.  This is very similar to the incorrect 
self-occlusion problem we had with AO fields.  It’s caused by bilinear filtering, 
since a height change can fall between two texels, and we end up blending 
occlusion values above the heightmap with those under the heightmap. 
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Here’s that artifact again, showing just the AO channel. 
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I mentioned earlier that we have special handling for sample points under the 
heightmap.  During the precompute step, we mark all those points as invalid; 
then, once we’ve gotten all the other samples, we run a dilation step to 
propagate valid samples onto adjacent invalid ones. 
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Here’s the heightmap again, with the valid samples in blue and the invalid 
samples (those under the heightmap) in red. 
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And here we have run one dilation step to copy valid samples onto adjacent 
invalid ones.  We run a couple of iterations of this. 
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Here’s the AO channel before this fixup. 
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And here it is after the fix.  It’s a subtle issue, but you can see the halos 
around the window frame have disappeared. 
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Here’s the full render before… 
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…and after. 
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The other artifact that we run into with this is that we get no occlusion from 
the wall onto the source geometry – only the other way around.  This results 
in edges looking too soft and rounded, as seen here.  The side of the window 
frame is at a 90-degree angle to the wall, but the edge is hardly visible 
because the AO is just blurry along that corner. 
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Here’s what this artifact looks like in the AO channel. 
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Our solution to this actually doesn’t modify the decal texture at all, but rather 
includes a wall-occlusion term in the baked per-vertex AO of the window.  We 
calculate this as a dot product with the vertex normal and the direction the 
decal faces.  This is based on the assumption that the wall is an infinite plane 
behind the object, so we don’t need to know its exact placement.  It’s based 
on the same hemisphere-overlap calculation I showed for AO Fields earlier.  
This gets multiplied into any other vertex AO on the window. 
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Here’s the window before this term is applied… 
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…and after.  The edges are much crisper and the shape of the whole window 
is better defined. 
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Here’s the full render before… 
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…and after. 
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Now for some data.  In Infamous 2 we had about 116 unique assets with AO 
fields or decals applied.  That doesn’t sound like many, but we reuse assets 
quite heavily, so there were actually OVER NINE THOUSAND instances of 
those assets throughout the game world.  The texture data for these was only 
a little over half a megabyte in total. 
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As for performance, the shaders are usually pixel-bound, and in a typical 
frame of Infamous 2 there are anywhere from 20 to 100 fields and decals 
being drawn.  These typically take 0.3 to 1 ms on PS3, although in occasional 
bad cases they can get up to 2.3 ms.  Still, they’re a fairly small part of the 
frame. 
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There are some enhancements we’d like to make.  The biggest complaint I get 
from artists and other programmers is that building AO fields and decals takes 
too long.  Computing all the occlusion samples can take several minutes per 
asset, especially for decals, which tend to have many more samples than 
fields.  Fortunately, there’s some low-hanging fruit there, since our offline 
renderer is very simple and not particularly smart. 

 

I’d also like to improve our treatment of undersampling artifacts.  Currently, 
we’re just kind of hacking around the undersampling problem by biasing 
samples along the normal vector, as I mentioned earlier.  Supersampling the 
textures should help somewhat, although that will of course make things take 
even longer to build.  And I’d like to find a good way to detect invalid samples 
(those enclosed inside geometry) in 3D for AO fields, like we do for AO decals. 

 

Finally, I’d like to try using AO fields on characters.  If you put a very low-res 
AO field on each major bone, you should be able to get dynamic AO between 
the character’s arms and body, between the legs, etc. 
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To sum up, AO Fields and AO Decals represent a good way to fill in the gap 
between baked AO and SSAO and get that medium-scale occlusion that 
neither baked AO nor SSAO handles very well.  They were certainly useful 
techniques for us to get more interesting and dynamic ambient lighting 
throughout Infamous 2 without spending too much performance or memory, 
and I hope I’ve given you some ideas for how to do the same in your own 
games as well. 
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Feel free to email me with any questions or comments. 
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